Assignment 4

Issue date: 16 Nov 2016 **Due date:** 23 Nov 2016

Exercise 1.

For a function $r: \mathbb{N} \to \mathbb{N}$ satisfying r(n) > n for all $n \in \mathbb{N}$, a language $A \subseteq \Sigma^*$, and distinct letters $a, b \in \Sigma$, we define the padding language A_r as follows:

$$A_r =_{\operatorname{def}} \{ xba^{r(|x|)-|x|-1} \mid b \neq a \land x \in A \}$$

A function $t : \mathbb{N} \to \mathbb{N}$ is said to be *time-constructible* if and only if the mapping $x \mapsto t(|x|)$ is computable in time $t(|x|)^k$ for some $k \ge 1$ on a T-TM.

Show that for any time-constructible functions $t(n) \ge n$ and r(n) > n, the following is true:

$$A \in \text{DTIME}(\text{Pol } t \circ r) \iff A_r \in \text{DTIME}(\text{Pol } t)$$

Exercise 2.

Show that the following statements hold for all functions f, g:

- (a) If $f, g \in FL$ then $f \circ g \in FL$.
- (b) If $f, g \in FP$ then $f \circ g \in FP$.

Exercise 3.

For a word function $f: \Sigma^* \to \Delta^*$, we define

$$Symb(f) =_{def} \{ (x, m, f(x)_m) \mid x \in \Sigma^*, m \ge 1 \},$$

where z_m denotes the m-th symbol in $z \in \Delta^*$ (z_m is not defined for $m \notin \{1, \ldots, |z|\}$).

Show that for each monotone function $s(n) \ge \log n$ the following holds:

$$f \in \text{FDSPACE}(\text{Pol } s) \iff \text{Symb}(f) \in \text{DSPACE}(\text{Pol } s) \text{ and}$$

$$|f(x)| \leq_{\text{ae}} 2^{s(|x|)^k} \text{ for some } k$$