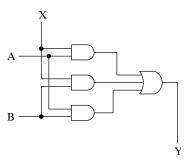
FACHBEREICH INFORMATIK & INFORMATIONSWISSENSCHAFT

Dr. Sven Kosub / Adrian Beer, Lars Grubenmann, Steffen Sievering

6. Übungsblatt

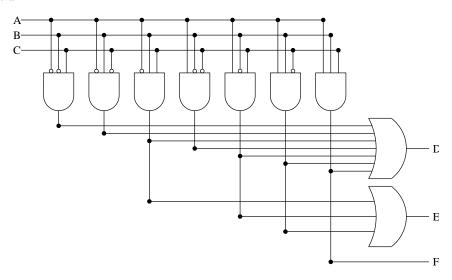

Ausgabe: 28.11.2008 **Abgabe:** 05.12.2008, 12:00 im Treppenhaus vor Sekretariat (E 214)

Aufgabe 1: Logiksysteme

10 Punkte

WS 2008/2009

Stellen Sie eine Wertetabelle für das Eingabe-Ausgabe-Verhalten der folgenden digitalen Schaltung auf:



Die Eingaben liegen an den Eingängen A, B und X an, die Ausgabe wird an Y abgelesen.

Aufgabe 2: Logiksysteme

10 Punkte

Stellen Sie eine Wertetabelle für das Eingabe-Ausgabe-Verhalten der folgenden digitalen Schaltung auf:

Die Eingaben liegen an den Eingängen A, B und C an, die Ausgaben werden an den Ausgängen D, E und F abgelesen.

Wir betrachten den sehr einfachen Prozessortyp SIMPIUM 4. SIMPIUM 4-Prozessoren verfügen neben dem Steuerwerk und einer ALU für 8-Bit-Arithmetik über vier 8-Bit-Register R1, R2, R3 und R4 sowie den Befehlszähler IC und das Befehlsregister IR.

Nehmen Sie an, ein Simpium 4-Prozessor würde gerade ein Programmfragment abarbeiten, dessen Befehle sich unter Verwendung der Assembler-Notation wie folgt beschreiben lassen:

Adresse	Befehl	Interpretation
0x10		•••
0x11	BZ R1,R3	falls Inhalt von R1 null ist, springe zu Adresse, die in R3 steht
0x12	SUB R1,R2	subtrahiere Inhalt von R3 vom Inhalt von R1, Ergebnis steht in R1
0x13	JMP R4	springe zu Adresse, die in R4 steht
0x14		

Die Inhalte der Register IC, R1, R2, R3 und R4 seien wie folgt:

$$\langle IC \rangle = 0x11 \quad \langle R1 \rangle = 0x0f \quad \langle R2 \rangle = 0x05 \quad \langle R3 \rangle = 0x14 \quad \langle R4 \rangle = 0x11$$

Geben Sie die Inhalte der Register IC und R1 für jeden Durchlauf des fundamentalen Instruktionszyklus des SIMPIUM 4-Prozessors an, bis ein Befehl abgearbeitet wird, der außerhalb des Adressbereiches des Programmfragments liegt.

Beachtung: 0x steht für die Hexadezimaldarstellung.